THE SENTIMENT ANALYSIS OF INDONESIAN NATIONAL LIBRARY’S TWITTER AND INSTAGRAM
DOI:
https://doi.org/10.24269/pls.v5i2.4412Abstrak Social media is one of the technological devices that can be used by the public to disseminate data or information in real time. In this case, the approach used is the Social Media Analytic (SMA) framework, especially Sentiment Analysis (SA) using Brand24. Sentiment Analysis is a measurement of human sentiment/emotional on social media based on content analysis (positive/negative/neutral). This study aims to determine the analysis of sentiment on the twitter and instagram accounts of the national library. The research data was taken from Twitter and Instagram data analysis using the keywords @perpusnas1 #perpusnas #perpustakaannasional. The results showed that there were 24 mentions from twitter users and 55 mentions from Instagram users. On Twitter the number of positive sentiment analysis is 3, negative 3 and neutral is 18, while on Instagram the number of sentiment analysis is positive 33, negative 4, and neutral 18.
Referensi
DeLone, W.,& McLean, E. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3, 60-95.
Ali, S.R., Dobbs, T.D., & Whitaker, I.S. (2020). Webinars in plastic and reconstructive surgery traininga review of the current landscape during the COVID-19 pandemic. Journal of Plastic, Reconstructive & Aesthetic Surgery, 73(7), 1357-1404. https://doi.org/10.1016/j.bjps.2020.05.038
Bertot, J. C., Jaeger, P. T., & Hansen, D. (2012). The impact of polices on government social media usage: Issues, challenges, and recommendations. Government Information Quarterly, 29(1), 30–40. https://doi.org/10.1016/j.giq.2011.04.004
Cambaria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, 28, 15–21. https://doi.org/doi: 10.1109/MIS.2013.30
Criado, J. I., Sandoval-Almazan, R., & Gil-Garcia, J. R. (2013). Government innovation through social media. Government Information Quarterly, 30(4), 319–326. https://doi.org/10.1016/j.giq.2013.10.003
Dwianto, R. A., Nurmandi, A., & Salahudin, S. (2021). The Sentiments Analysis of Donald Trump and Jokowi’s Twitters on Covid-19 Policy Dissemination. Webology, 18(1), 389–405. https://doi.org/10.14704/WEB/V18I1/WEB18096
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82–89. https://doi.org/10.1145/2436256.2436274
Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. In The Text Mining Handbook. Cambridge University Press.
Gautam, G., & Yadav, D. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis. 2014 7th International Conference on Contemporary Computing, IC3 2014, 437–442. https://doi.org/10.1109/IC3.2014.6897213
Mayfield, A. (2008). What is social media? iCrossing.
Murfi, H., Siagian, F. L., & Satria, Y. (2019). Topic features for machine learning-based sentiment analysis in Indonesian tweets. International Journal of Intelligent Computing and Cybernetics, 12(1), 70–81. https://doi.org/10.1108/IJICC-04-2018-0057
Nulty, P., Theocharis, Y., Popa, S. A., Parnet, O., & Benoit, K. (2016). Social media and political communication in the 2014 elections to the European Parliament. Electoral Studies, 44, 429–444. https://doi.org/10.1016/j.electstud.2016.04.014
Pratama, Y., Roberto Tampubolon, A., Diantri Sianturi, L., Diana Manalu, R., & Frietz Pangaribuan, D. (2019). Implementation of Sentiment Analysis on Twitter Using Naïve Bayes Algorithm to Know the People Responses to Debate of DKI Jakarta Governor Election. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012102
Prayoga, K. (2020). How jokowi communicates with the public during covid-19 crisis: An analysis of tweets on twitter. Jurnal Komunikasi: Malaysian Journal of Communication, 36(2), 434–456. https://doi.org/10.17576/JKMJC-2020-3602-26
Stieglitz, S., & Dang-Xuan, L. (2013). Social Media and Political Communication: a Social Media Analytics Framework. Social Network Analysis and Mining, 3(4), 1277–1291. https://doi.org/10.1007/s13278-012-0079-3
Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics – Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39(December 2017), 156–168. https://doi.org/10.1016/j.ijinfomgt.2017.12.002
Tsou, M. H., Yang, J. A., Han, S., Jung, C. Te, Gawron, J. M., Allen, C., & Spitzberg, B. H. (2015). Social Media Analytics and Research Test-bed (SMART Dashboard). ACM International Conference Proceeding Series, 2015-July. https://doi.org/10.1145/2789187.2789196
Ali, S.R., Dobbs, T.D., & Whitaker, I.S. (2020). Webinars in plastic and reconstructive surgery traininga review of the current landscape during the COVID-19 pandemic. Journal of Plastic, Reconstructive & Aesthetic Surgery, 73(7), 1357-1404. https://doi.org/10.1016/j.bjps.2020.05.038
Bertot, J. C., Jaeger, P. T., & Hansen, D. (2012). The impact of polices on government social media usage: Issues, challenges, and recommendations. Government Information Quarterly, 29(1), 30–40. https://doi.org/10.1016/j.giq.2011.04.004
Cambaria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, 28, 15–21. https://doi.org/doi: 10.1109/MIS.2013.30
Criado, J. I., Sandoval-Almazan, R., & Gil-Garcia, J. R. (2013). Government innovation through social media. Government Information Quarterly, 30(4), 319–326. https://doi.org/10.1016/j.giq.2013.10.003
Dwianto, R. A., Nurmandi, A., & Salahudin, S. (2021). The Sentiments Analysis of Donald Trump and Jokowi’s Twitters on Covid-19 Policy Dissemination. Webology, 18(1), 389–405. https://doi.org/10.14704/WEB/V18I1/WEB18096
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82–89. https://doi.org/10.1145/2436256.2436274
Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. In The Text Mining Handbook. Cambridge University Press.
Gautam, G., & Yadav, D. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis. 2014 7th International Conference on Contemporary Computing, IC3 2014, 437–442. https://doi.org/10.1109/IC3.2014.6897213
Mayfield, A. (2008). What is social media? iCrossing.
Murfi, H., Siagian, F. L., & Satria, Y. (2019). Topic features for machine learning-based sentiment analysis in Indonesian tweets. International Journal of Intelligent Computing and Cybernetics, 12(1), 70–81. https://doi.org/10.1108/IJICC-04-2018-0057
Nulty, P., Theocharis, Y., Popa, S. A., Parnet, O., & Benoit, K. (2016). Social media and political communication in the 2014 elections to the European Parliament. Electoral Studies, 44, 429–444. https://doi.org/10.1016/j.electstud.2016.04.014
Pratama, Y., Roberto Tampubolon, A., Diantri Sianturi, L., Diana Manalu, R., & Frietz Pangaribuan, D. (2019). Implementation of Sentiment Analysis on Twitter Using Naïve Bayes Algorithm to Know the People Responses to Debate of DKI Jakarta Governor Election. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012102
Prayoga, K. (2020). How jokowi communicates with the public during covid-19 crisis: An analysis of tweets on twitter. Jurnal Komunikasi: Malaysian Journal of Communication, 36(2), 434–456. https://doi.org/10.17576/JKMJC-2020-3602-26
Stieglitz, S., & Dang-Xuan, L. (2013). Social Media and Political Communication: a Social Media Analytics Framework. Social Network Analysis and Mining, 3(4), 1277–1291. https://doi.org/10.1007/s13278-012-0079-3
Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics – Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39(December 2017), 156–168. https://doi.org/10.1016/j.ijinfomgt.2017.12.002
Tsou, M. H., Yang, J. A., Han, S., Jung, C. Te, Gawron, J. M., Allen, C., & Spitzberg, B. H. (2015). Social Media Analytics and Research Test-bed (SMART Dashboard). ACM International Conference Proceeding Series, 2015-July. https://doi.org/10.1145/2789187.2789196
Unduhan
Diterbitkan
2022-02-21
Cara Mengutip
Ibrahim, C. (2022). THE SENTIMENT ANALYSIS OF INDONESIAN NATIONAL LIBRARY’S TWITTER AND INSTAGRAM. Publication Library and Information Science, 5(2), 48–56. https://doi.org/10.24269/pls.v5i2.4412
Terbitan
Bagian
Articles