REPRESENTASI su(2) DAN KOMPLEKSIFIKASI su(2)_C=sl(2,C) PADA RUANG VEKTOR POLINOM HOMOGEN

Edi Kurniadi* -  Departemen Matematika FMIPA Unpad, Indonesia
Badrulfalah Badrulfalah -  Departemen Matematika FMIPA Unpad, Indonesia
Nurul Gusriani -  Departemen Matematika FMIPA Unpad, Indonesia

DOI : 10.24269/silogisme.v9i2.9259

Aljabar Lie su(N) mempunyai kompleksifikasi sl(N,C). Dengan kata lain, suNC≅sl(N,C). Dalam artikel ini, dipelajari representasi aljabar Lie su(N) dan sl(N,C) khususnya untuk N=2 yang direalisasikan pada ruang vektor polinom homogen kompleks dua variabel berderajat dua. Tujuannya adalah untuk mengkonstruksi representasi sl(2,C) dari representasi su(2) dan  membuktikan bahwa representasi yang diperoleh bersifat unitar dan tak tereduksi. Selanjutnya, karena grup Lie dari  su(2) bersifat simply connected maka representasi su(2) dapat dikonstruksi dari grup Lie-nya. Di sisi lain, karena su2C≅sl(2,C) maka representasi dari sl(2,C) dapat dikonstruksi melalui perluasan linear-kompleks dari representasi su(2) dan hasilnya dapat dinyatakan dalam bentuk operator linear.

Supplement Files

Keywords
Complexification, Lie Algebra su(N), representation, unitary, irreducibility
  1. Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018a). Contact and Frobenius Solvable Lie Algebras with Abelian Nilradical. Communications in Algebra, 46(10), 4344–4354. https://doi.org/10.1080/00927872.2018.1439048
  2. Berndt, R. (2007). Representations of Linear Groups. https://doi.org/10.1007/978-3-8348-9401-4
  3. Diatta, A., & Manga, B. (2014). On Properties of Principal Elements of Frobenius Lie Algebras. Journal of Lie Theory, 24(3), 849–864.
  4. Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices, Frobenius Lie algebras and Gerstenhaber’s Theorem. http://arxiv.org/abs/2002.08737
  5. Elashvili, A. G. (1983). Frobenius Lie Algebras. Functional Analysis and Its Applications, 16(4), 326–328. https://doi.org/10.1007/BF01077870
  6. Gerstenhaber, M., & Giaquinto, A. (2009). The Principal Element of a Frobenius Lie Algebra. Letters in Mathematical Physics, 88(1–3), 333–341.
  7. Hall, B. C. (2015). Lie Groups, Lie Algebras, and Representations (Vol. 222). Springer International Publishing. https://doi.org/10.1007/978-3-319-13467-3
  8. Hilgert, J., & Neeb, K.-H. (2012). Structure and Geometry of Lie Groups. Springer New York. https://doi.org/10.1007/978-0-387-84794-8
  9. Ooms, A. I. (1974). On Lie Algebras Having a Primitive Universal Enveloping Algebra. Journal of Algebra, 32(3), 488–500. https://doi.org/10.1016/0021-8693(74)90154-9
  10. Ooms, A. I. (1976). On Lie Algebras with Primitive Envelopes, Supplements. Proceedings of the American Mathematical Society, 58(1), 67–72. https://doi.org/10.1090/S0002-9939-1976-0430007-6
  11. Ooms, A. I. (1980). On Frobenius Lie Algebras. Communications in Algebra, 8(1), 13–52. https://doi.org/10.1080/00927878008822445
  12. Ooms, A. I. (2009). Computing Invariants and Semi-Invariants by Means of Frobenius Lie Algebras. Journal of Algebra, 321(4), 1293–1312. https://doi.org/10.1016/j.jalgebra.2008.10.026
  13. Pfeifer, W. (2003). The Lie Algebras su(N). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8097-8
  14. Salgado-González, G. (2019). Invariants of Contact Lie Algebras. Journal of Geometry and Physics, 144, 388–396. https://doi.org/10.1016/j.geomphys.2019.06.014

Full Text: Supp. File(s):
Surat pernyataan keaslian naskah
Subject
Type Other
  Download (145KB)    Indexing metadata
Article Info
Submitted: 2024-05-13
Published: 2024-12-15
Section: Artikel
Article Statistics: