SIGNATURE PSO: MODIFIED PARTICLE SWARM OPTIMIZATION DENGAN FUZZY SIGNATURE DAN IMPLEMENTASI PADA OPTIMALISASI KENDALI LQR

Novendra Setyawan* -  Universitas Muhammadiyah Malang, Indonesia
Ermanu Azizul Hakim -  Universitas Muhammadiyah Malang, Indonesia
Zulfatman Zulfatman -  , Indonesia

DOI : 10.24269/mtkind.v13i2.2227

Particle Swarm Optimization (PSO) is an optimization that is simple and reliable to complete optimization. In this method, the distribution of particles through global search and local search is the key obtained through searching with PSO through the inertia parameter. This paper describes the method of changing the weights on PSO using fuzzy signatures. In this paper, the method used to solve the problem of optimizing the LQR control parameters on the stabilization of a double inverted pendulum. Performance evaluation is done by another weight change algorithm. Integral Time Absolute Error (ITAE) 7% compared to other algorithms. PSO signatures have resilience and are optimal in fulfilling these interests.

Keywords
Particle Swarm Optimization, Inertia, LQR, Fuzzy Signature, Inverted Pendulum
  1. R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” Proc. Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995.
  2. F. Yu and X. Xu, “A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network,” Appl. Energy, vol. 134, pp. 102–113, 2014.
  3. R. . E. Y.H. Shi, “A Modified Particle Swarm Optimizer,” IEEE Int. Conf. Evol. Comput., vol. 49, no. 5, pp. 1144–1153, 1998.
  4. Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” Proc. 1999 Congr. Evol. Comput. CEC 1999, vol. 3, pp. 1945–1950, 1999.
  5. E. Engineering, I. Teknologi, and S. Nopember, “Adaptive Gaussian Parameter Particle Swarm Optimization And Its Implementation in Mobile Robot Path Planning,” pp. 238–243, 2017.
  6. A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle swarm optimization algorithm with adaptive inertia weight,” Appl. Soft Comput. J., vol. 11, no. 4, pp. 3658–3670, 2011.
  7. F. Olivas, F. Valdez, O. Castillo, and P. Melin, “Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic,” Soft Comput., vol. 20, no. 3, pp. 1057–1070, 2016.
  8. Á. Ballagi and L. T. Kóczy, “Fuzzy signature based mobil robot motion control system,” SAMI 2008 6th Int. Symp. Appl. Mach. Intell. Informatics - Proc., pp. 29–33, 2008.
  9. M. N. Achmadiah, “STABILISASI PADA DOUBLE INVERTED PENDULUM MENGGUNAKAN METODE,” pp. 33–48.
  10. T. Agustinah, T. Elektro, and F. T. Industri, “Stabilisasi Pada Sistem Pendulum-Kereta dengan Menggunakan Metode Fuzzy-Sliding Mode Control,” vol. 3, no. 1, pp. 53–57, 2014.
  11. E. Vinodh Kumar, G. S. Raaja, and J. Jerome, “Adaptive PSO for optimal LQR tracking control of 2 DoF laboratory helicopter,” Appl. Soft Comput. J., vol. 41, pp. 77–90, 2016.
  12. P. S. Khatoon, “Optimal control of a double inverted pendulum by linearization technique,” no. 1, pp. 1–5.

Full Text:
Article Info
Submitted: 2019-12-22
Published: 2020-01-01
Section: Artikel
Article Statistics: 31 35
Citation :