THE ROLE OF MICRORNA-200C IN CHEMORESISTANT BREAST CANCER

Agung Bagus Sista Satyarsa* -  University of Udayana, Indonesia
IGP Supadmanaba -  University of Udayana, Indonesia
PAT Adiputra -  University of Udayana, Indonesia

DOI : 10.24269/ijhs.v4i2.2423

Breast cancer is a non-communicable diseases and also major health problem in the world. Based on data from WHO in 2012, the incidence of breast cancer reported as 1.67 million cases. One cause of highest morbidity and mortality in breast cancer is chemoresistancy. Many pathways could cause chemoresistant in breast cancer. The one of pathways are from genetic such as miR-200c. Base on the other study, mir-200c act an apoptosis inducer and inhibit metastasis in chemoresistant breast cancer cells. The mir-200c act the role in specific target cells in chemoresistant breast cancer. Meanwhile, the expression of miR-200c induces Mesenchymal Epithelial Transition (MET) by inhibits ZEB 1 or 2 and TGF-β2 as anti-metastases in chemoresistant breast cancer. miR-200c has a promising potential as a new treatment for chemoresistant breast cancer, because of its potent pro-apoptotic and anti-metastatic properties.

Supplement Files

Keywords
Breast Cancer, miR-200c, Chemoresistant, Mesenchymal Epithelial Transition (MET)
  1. A. B. S. Satyarsa, “Potential of  Fucoidan From Brown Seaweeds  (Sargassum sp.) as Innovation  Therapy on Breast Cancer,” J. Med.  Heal., vol. 2, no. 3, pp. 909–19, 2019,  doi: 10.28932/jmh.v2i3.1235.
  2. World Health Organization (WHO),  Prevention Cancer Control:  knowledge into action: WHO guide  for effective programmes: module  (2). Geneva: World Health  Organization, 2012.
  3. International Agency for Research on  Cancer (IARCH)/WHO, “Estimated  cancer incidence, mortality, and  prevalence worldwide in 2012,”  2012.  https://publications.iarc.fr/Databases/ Iarc-Cancerbases/GLOBOCAN- 2012-Estimated-Cancer-Incidence- Mortality-And-Prevalence- Worldwide-In-2012-V1.0-2012  (accessed Jan. 28, 2020).
  4. A. Kamdje et al., “New targeted  therapies for breast cancer: A focus  on tumor microenvironmental signals  and chemoresistant breast cancers,”  World J. Clin. Cases, vol. 2, no. 12,  p. 769, 2014, doi:  10.12998/wjcc.v2.i12.769.
  5. A. Satyarsa, S. Suryantari, P.  Gumilang, I. Supadmanaba, and P.  Adiputra, “Potensi mikrosfer  kombinasi fukoidan dan mirna-200c  sebagai inovasi penatalaksanaan  kanker payudara kemoresisten,” Maj.  Kedokt. Andalas, vol. 43, no. 1, pp.  57–70, 2019.
  6. R. Pinto, S. Summa, B. Pilato, and S.  Tommasi, “DNA Methylation and  miRNAs Regulation in Hereditary  Breast Cancer: Epigenetic Changes,  Players in Transcriptional and Post- Transcriptional Regulation in  Hereditary Breast Cancer,” Curr.  Mol. Med., vol. 14, no. 1, pp. 45–57,  2014, doi:  10.2174/15665240136661312031014 05.
  7. Breast Cancer Organization, “What  are the Side Effects of  Chemotherapy?,” Breast Cancer  Organization, 2012.  http://www.breastcancer.org/question s/chemotherapy (accessed Jan. 20,  2020).
  8. Y. Shimono et al., “Downregulation  of miRNA-200c Links Breast Cancer  Stem Cells with Normal Stem Cells,”  Cell, vol. 138, no. 3, pp. 592–603,  2009, doi:  10.1016/j.cell.2009.07.011.
  9. J. Chen, W. Tian, H. Cai, H. He, and  Y. Deng, “Down-regulation of  microRNA-200c is associated with  drug resistance in human breast  cancer,” Med. Oncol., vol. 29, no. 4,  pp. 2527–2534, 2012, doi:  10.1007/s12032-011-0117-4.
  10. S. Wiranata, M. Yani, A. Satyarsa, I.  Ardiana, and P. Adiputra, “Potency  of Combination of Fucoidan  Microsphere and MiRNA-200b as  Therapy in Chemoresistant Breast  Cancer,” J. Med. Heal., vol. 2, no. 5,  pp. 103–10, 2020.
  11. Y. Chen et al., “MiRNA-200c  increases the sensitivity of breast  cancer cells to doxorubicin through  the suppression of E-cadherin- mediated PTEN/Akt signaling” Mol.  MedRep,vol.7,no.5,pp.15791584,201 3,doi:10.3892/mmr.2013.1403.
  12. R. Neves et al., “Role of DNA  methylation in miR-200c/141 cluster  silencing in invasive breast cancer  cells,” BMC Res. Notes, vol. 3, 2010,  doi: 10.1186/1756-0500-3-219.
  13. L. Roncati, G. Barbolini, A. M. Gatti,  T. Pusiol, F. Piscioli, and A.  Maiorana, “The Uncontrolled  Sialylation is Related to  Chemoresistant Metastatic Breast  Cancer,” Pathol. Oncol. Res., vol. 22,  no. 4, pp. 869–873, 2016, doi:  10.1007/s12253-016-0057-6.
  14. S. Chuthapisith, J. Eremin, M. El- Sheemey, and O. Eremin, “Breast  cancer chemoresistance: Emerging  importance of cancer stem cells,”  Surg.Oncol.,vol.19,no.1,pp.27-32, 2010,doi:10.1016/j.suronc.2009.01.4.
  15. D. X. He et al., “Genome-wide  profiles of methylation, microRNAs,  and gene expression in  chemoresistant breast cancer,” Sci.  Rep., vol. 6, no. 1, pp. 1–1, 2016, doi:  10.1038/srep24706.
  16. K. M. Gligorich et al., “Development  of a screen to identify selective small  molecules active against patient- derived metastatic and chemo- resistant breast cancer cells,” Breast  Cancer Res., vol. 15, no. 4, 2013, doi:  10.1186/bcr3452.
  17. J. Zhang and L. Ma, “MicroRNA  control of epithelial-mesenchymal  transition and metastasis,” Cancer  Metastasis Rev., vol. 31, no. 3–4, pp.  653–662, 2012, doi: 10.1007/s10555- 012-9368-6.
  18. S. M. Park, A. B. Gaur, E. Lengyel,  and M. E. Peter, “The miR-200  family determines the epithelial  phenotype of cancer cells by  targeting the E-cadherin repressors  ZEB1 and ZEB2,” Genes Dev., vol.  22, no. 7, pp. 894–907, 2008, doi:  10.1101/gad.1640608.
  19. S. Hyun et al., “Conserved  MicroRNA miR-8/miR-200 and Its  Target USH/FOG2 Control Growth  by Regulating PI3K,” Cell, vol. 139,  no. 6, pp. 1096–1108, 2009, doi:  10.1016/j.cell.2009.11.020.
  20. J. Wang, M. Yang, Y. Li, and B. Han,  “The Role of MicroRNAs in the  Chemoresistance of Breast Cancer,”  Drug Dev.Res.,vol.76, no. 7, pp. 368– 374,2015,doi:10.1002/ddr.21275.
  21. M. Garofalo and C. M. Croce,  “MicroRNAs as therapeutic targets in  chemoresistance,” Drug Resist.  Updat., vol. 16, no. 3–5, pp. 47–59,  2013, doi:  10.1016/j.drup.2013.05.001.
  22. B. W.-D. et al., “MiR-200c  suppresses TGF-β signaling and  counteracts trastuzumab resistance  and metastasis by targeting ZNF217  and ZEB1 in breast cancer,” Int. J.  Cancer, vol. 135, no. 6, pp. 1356– 1368, 2014, doi: 10.1002/ijc.28782  LK - http://rug.on.worldcat.org/atoztitles/li nk/?sid=EMBASE&issn=10970215& id=doi:10.1002%2Fijc.28782&atitle= MiR-200c+suppresses+TGF- %CE%B2+signaling+and+counteract s+trastuzumab+resistance+and+meta stasis+by+targeting+ZNF217+and+Z EB1+in+breast+cancer&stitle=Int.+J. +Cancer&title=International+Journal +of+Cancer&volume=135&issue=6 &spage=1356&epage=1368&aulast= Bai&aufirst=Wen-Dong&auinit=W.- D.&aufull=Bai+W.- D.&coden=IJCNA&isbn=&pages=13 56- 1368&date=2014&auinit1=W&auinit m=-D.
  23. D. P. Bartel, “MicroRNAs:  Genomics, Biogenesis, Mechanism,  and Function,” Cell, vol. 116, no. 2,  pp. 281–297, 2004, doi:  10.1016/S0092-8674(04)00045-5.
  24. C. Wang et al., “Gas6/Axl axis  contributes to chemoresistance and  metastasis in breast cancer through  Akt/GSK-3β/β- catenin signaling,”  Theranostics, vol. 6, no. 8, pp. 1205– 1219, 2016, doi:  10.7150/thno.15083.
  25. V. P. Tryndyak, F. A. Beland, and I.  P. Pogribny, “E-cadherin  transcriptional down-regulation by  epigenetic and microRNA-200 family  alterations is related to mesenchymal  and drug-resistant phenotypes in  human breast cancer cells,” Int. J.  Cancer, vol. 126, no. 11, pp. 2575– 2583, 2010, doi: 10.1002/ijc.24972.
  26. G. Moussavou et al., “Anticancer  effects of different seaweeds on  human colon and breast cancers,”  Mar. Drugs, vol. 12, no. 9, 2014, doi:  10.3390/md12094898.
  27. N. Ruocco, S. Costantini, S.  Guariniello, and M. Costantini,  “Polysaccharides from the marine  environment with pharmacological,  cosmeceutical and nutraceutical  potential,” Molecules, vol. 21, no. 5,  2016, doi:  10.3390/molecules21050551.
  28. D. Serpico, L. Molino, and S. Di  Cosimo, “MicroRNAs in breast  cancer development and treatment,”  Cancer Treat. Rev., vol. 40, no. 5, pp.  595–604, 2014, doi:  10.1016/j.ctrv.2013.11.002.
  29. J. Duanmu, J. Cheng, J. Xu, C. J.  Booth, and Z. Hu, “Effective  treatment of chemoresistant breast  cancer in vitro and in vivo by a factor  VII-targeted photodynamic therapy,”  Br. J. Cancer, vol. 104, no. 9, pp.  1401–1409, 2011, doi:  10.1038/bjc.2011.88.
  30. J. Zhang et al., “β-elemene reverses  chemoresistance of breast cancer via  regulating MDR-related MicroRNA  expression,” Cell. Physiol. Biochem.,  vol. 34, no. 6, pp. 2027–2037, 2014,  doi: 10.1159/000366398.
  31. H. Y. Cho et al., “Enhanced killing of  chemo-resistant breast cancer cells  via controlled aggravation of ER  stress,” Cancer Lett., vol. 282, no. 1,  pp. 87–97, 2009, doi:  10.1016/j.canlet.2009.03.007.
  32. F. Kopp, P. S. Oak, E. Wagner, and  A. Roidl, “miR-200c Sensitizes  Breast Cancer Cells to Doxorubicin  Treatment by Decreasing TrkB and  Bmi1 Expression,” PLoS One, vol. 7,  no. 11, 2012, doi:  10.1371/journal.pone.0050469.
  33. P. W. H. Frings et al., “Elimination  of the chemotherapy resistant  subpopulation of 4T1 mouse breast  cancer by haploidentical NK cells  cures the vast majority of mice,”  Breast Cancer Res. Treat., vol. 130,  no. 3, pp. 773–781, 2011, doi:  10.1007/s10549-011-1355-z.
  34. S. N. Fedorov, S. P. Ermakova, T. N.  Zvyagintseva, and V. A. Stonik,  “Anticancer and cancer preventive  properties of marine polysaccharides:  Some results and prospects,” Mar.  Drugs, vol. 11, no. 12, pp. 4876– 4901, 2013, doi:  10.3390/md11124876.
  35. C. Song et al., “miR-200c inhibits  breast cancer proliferation by  targeting KRAS,” Oncotarget, vol. 6,  no. 33, pp. 34968–34978, 2015, doi:  10.18632/oncotarget.5198.
  36. P. Ceppi et al., “Loss of miR-200c  expression induces an aggressive,  invasive, and chemoresistant  phenotype in non-small cell lung  cancer,” Mol. Cancer Res., vol. 8, no.  9, pp. 1207–1216, 2010, doi:  10.1158/1541-7786.MCR-10-0052.
  37. E. N. Howe, D. R. Cochrane, and J.  K. Richer, “The miR-200 and miR- 221/222 microRNA families:  Opposing effects on epithelial  identity,” J. Mammary Gland Biol.  Neoplasia, vol. 17, no. 1, pp. 65–77,  2012, doi: 10.1007/s10911-012-9244- 6
  38. G. J. Hurteau, J. A. Carlson, S. D.  Spivack, and G. J. Brock,  “Overexpression of the MicroRNA  hsa-miR-200c leads to reduced  expression of transcription factor 8  and increased expression of E- cadherin,” Cancer Res., vol. 67, no.  17, pp. 7972–7976, 2007, doi:  10.1158/0008-5472.CAN-07-1058.
  39. G. J. Hurteau, J. A. Carlson, E. Roos,  and G. J. Brock, “Stable expression  of miR-200c alone is sufficient to  regulate TCF8 (ZEB1) and restore E- cadherin expression,” Cell Cycle, vol.  8, no. 13, pp. 2064–2069, 2009, doi:  10.4161/cc.8.13.8883.
  40. J. Knezevic, A. D. Pfefferle, I.  Petrovic, S. B. Greene, C. M. Perou,  and J. M. Rosen, “Expression of  miR-200c in claudin-low breast  cancer alters stem cell functionality,  enhances chemosensitivity and  reduces metastatic potential,”  Oncogene, vol. 34, no. 49, pp. 5997– 6006, 2015, doi:  10.1038/onc.2015.48.
  41. E. N. Howe, D. R. Cochrane, and J.  K. Richer, “Targets of miR-200c  mediate suppression of cell motility  and anoikis resistance,” Breast  Cancer Res., vol. 13, no. 2, 2011, doi:  10.1186/bcr2867.
  42. R. Schickel, S. M. Park, A. E.  Murmann, and M. E. Peter, “miR- 200c regulates induction of apoptosis  through CD95 by targeting FAP-1.,”  Mol. Cell, vol. 38, no. 6, pp. 908– 915, 2010, doi:  10.1016/j.molcel.2010.05.018.
  43. L. Liu et al., “MiR-200c Inhibits  invasion, migration and proliferation  of bladder cancer cells through down- regulation of BMI-1 and E2F3,” J.  Transl. Med., vol. 12, no. 1, 2014,  doi: 10.1186/s12967-014-0305-z.
  44. D. Chen et al., “MicroRNA-200c  overexpression inhibits  tumorigenicity and metastasis of  CD117+CD44+ ovarian cancer stem  cells by regulating epithelial- mesenchymal transition,” J. Ovarian  Res., vol. 6, no. 1, 2013, doi:  10.1186/1757-2215-6-50.
  45. P. A. Hubbard, C. Moody, and R.  Murali, “Allosteric modulation of  Ras and the PI3K/AKT/mTOR  pathway: Emerging therapeutic  opportunities,” Front. Physiol., vol.  5, no. Nov, 2014, doi:  10.3389/fphys.2014.00478.
  46. D. S. Yu et al., “MiR-200c regulates  ROS-induced apoptosis in murine  BV-2 cells by targeting FAP-1,”  Spinal Cord, vol. 53, no. 3, pp. 182– 189, 2015, doi: 10.1038/sc.2014.185.
  47. A. Mitra, L. Mishra, and S. Li,  “EMT, CTCs and CSCs in tumor  relapse and drug-resistance,”  Oncotarget, vol. 6, no. 13, pp.  10697–10711, 2015, doi:  10.18632/oncotarget.4037.
  48. Q. Wu, Z. Yang, Y. Nie, Y. Shi, and  D. Fan, “Multi-drug resistance in  cancer chemotherapeutics:  Mechanisms and lab approaches,”  Cancer Lett., vol. 347, no. 2, pp.  159–166, 2014, doi:  10.1016/j.canlet.2014.03.013.
  49. R. U. Takahashi, H. Miyazaki, and T.  Ochiya, “The roles of microRNAs in  breast cancer,” Cancers (Basel)., vol.  7, no. 2, pp. 598–616, 2015, doi:  10.3390/cancers7020598.

Full Text: Supp. File(s):
Copyright Statement and statement of Ethical Clearance for Publication
Subject
Type Research Instrument
  Download (136KB)    Indexing metadata
Article Info
Submitted: 2020-02-16
Published: 2020-09-01
Section: Artikel
Article Statistics: 52 21
Citation :