ANALISIS PERFORMASI OPERASI PEMBANGKIT TENAGA UAP

Thriskadewi Umi Rasyda -  Universitas Negeri Malang, Indonesia
AN Afandi* -  Universitas Negeri Malang, Indonesia
Yuni Rahmawati -  Universitas Negeri Malang, Indonesia

DOI : 10.24269/mtkind.v17i2.7990

Secara operasional salah satu komponen utama suatu sistem tenaga listrik adalah pembangkit, dimana pembangkit ini dapat berupa Pembangkit Listrik Tenaga Uap (PLTU) yang berdasarkan prinsip konversi melalui proses termal atau tipe pembangkit lainnya. Secara prinsip, PLTU mengandalkan energi kinetik uap untuk menghasilkan listrik yang akan dialirkan ke beban. Kajian ini bertujuan untuk mengetahui kinerja PLTU dalam penyediaan energy listrik yang dihasilkan oleh turbin dan energi panas melalui pendekatan yang dipilih menggunakan model yang didukung oleh data teknis sebagai bahan spesifikasi sistem pembangkit. Hasil evaluasi menunjukkan bahwa PLTU yang diintegrasikan pada sistem dengan pendekatan model standar IEEE-9 bus dan dioperasikan secara hibrida melalui kombinasi dengan pembangkit listrik energi angin dan pembangkit listrik energi matahari, dapat bekerja dengan baik. Selain itu, diketahui bahwa PLTU memiliki opportunity untuk merespon variasi beban yang baik. Secara operasional sistem memiliki performa yang cukup baik dengan kondisi voltage bus yang bagus, walaupun ada pembangkit yang masih mengalami overload dalam suplai daya.

Keywords
Generator, Pembangkit, Performasi, PLTU, Tenaga Listrik
  1. A. Domyshev and D. Sidorov, “Optimization of the Structure of Power System Multi-Agent Control,” IFAC-Pap., vol. 55, no. 9, pp. 250–255, Jan. 2022, doi: 10.1016/j.ifacol.2022.07.044.
  2. G. Zhou, J. Hua, J. Zhao, Y. Feng, Y. Yao, and M. Fu, “GPU-based matrix structure driven state estimation for large-scale power systems,” Int. J. Electr. Power Energy Syst., vol. 133, p. 107298, Dec. 2021, doi: 10.1016/j.ijepes.2021.107298.
  3. K. Z. Akdemir et al., “Opportunities for wave energy in bulk power system operations,” Appl. Energy, p. 121845, Sep. 2023, doi: 10.1016/j.apenergy.2023.121845.
  4. B. Qiu, G. Li, X. Wei, M. Liu, and J. Yan, “System design and operation optimization on the hybrid system with nuclear power, concentrated solar, and thermal storage,” Ann. Nucl. Energy, vol. 189, p. 109862, Sep. 2023, doi: 10.1016/j.anucene.2023.109862.
  5. J. Qin et al., “Impact of thermal energy storage system on the Solar Aided Power Generation plant with diverse structure and extraction steam operation strategy,” Appl. Therm. Eng., vol. 221, p. 119801, Feb. 2023, doi: 10.1016/j.applthermaleng.2022.119801.
  6. I. S. Al-Mutaz and M. A. Soliman, “Optimum operation of steam-power cycle in dual purpose MSF desalination plants,” Desalination, vol. 84, no. 1, p. 104, Oct. 1991, doi: 10.1016/0011-9164(91)85120-J.
  7. N. N. Efimov, V. I. Parshukov, A. S. Oshchepkov, A. V. Ryzhkov, I. V. Rusakevich, and E. E. Blokhin, “Steam plant based on high-speed active microturbine with valve-inductor generator as part of power engineering complex for processing of CURRENT and power plant for hydrogen production,” Int. J. Hydrog. Energy, vol. 48, no. 49, pp. 18557–18566, Jun. 2023, doi: 10.1016/j.ijhydene.2023.01.368.
  8. S. K. Abadi, M. H. K. Manesh, M. A. Rosen, M. Amidpour, and M. H. Hamedi, “Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure,” Chin. J. Chem. Eng., vol. 22, no. 4, pp. 455–468, Apr. 2014, doi: 10.1016/S1004-9541(14)60054-9.
  9. C. Xu, X. Li, X. Liu, and J. Li, “An integrated de-carbonization supercritical coal-fired power plant incorporating a supplementary steam turbine, process heat recovery and a modified boiler structure,” Appl. Therm. Eng., vol. 178, p. 115532, Sep. 2020, doi: 10.1016/j.applthermaleng.2020.115532.
  10. P. E. Martinez and A. M. Eliceche, “Minimization of life cycle greenhouse emissions and cost in the operation of steam and power plants,” in Computer Aided Chemical Engineering, vol. 25, B. Braunschweig and X. Joulia, Eds., in 18 European Symposium on Computer Aided Process Engineering, vol. 25. , Elsevier, 2008, pp. 1107–1112. doi: 10.1016/S1570-7946(08)80191-5.
  11. A. N. Afandi, I. Fadlika, and L. Gumilar, “Power Flow Analysis of Power System Topology Development for Advancing Electricity System of Local Interconnection,” in 2018 4th International Conference on Science and Technology (ICST), Yogyakarta: IEEE, Aug. 2018, pp. 1–6. doi: 10.1109/ICSTC.2018.8528690.
  12. M. Ahmadipour, M. Murtadha Othman, R. Bo, M. Sadegh Javadi, H. Mohammed Ridha, and M. Alrifaey, “Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer,” Expert Syst. Appl., vol. 235, p. 121212, Jan. 2024, doi: 10.1016/j.eswa.2023.121212.
  13. M. Bayat, M. M. Koushki, A. A. Ghadimi, M. Tostado-Véliz, and F. Jurado, “Comprehensive enhanced Newton Raphson approach for power flow analysis in droop-controlled islanded AC microgrids,” Int. J. Electr. Power Energy Syst., vol. 143, p. 108493, Dec. 2022, doi: 10.1016/j.ijepes.2022.108493.
  14. F. Casella and B. Bachmann, “On the choice of initial guesses for the Newton-Raphson algorithm,” Appl. Math. Comput., vol. 398, p. 125991, Jun. 2021, doi: 10.1016/j.amc.2021.125991.
  15. Y. Yu, J. Li, and D. Chen, “Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source–load power interval prediction,” Glob. Energy Interconnect., vol. 5, no. 5, pp. 564–578, Oct. 2022, doi: 10.1016/j.gloei.2022.10.010.
  16. G. Li, J. Li, R. Yang, and X. Chen, “Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction,” Appl. Energy, vol. 323, p. 119625, Oct. 2022, doi: 10.1016/j.apenergy.2022.119625.
  17. A. H. Abdulrahim and J. N. Chung, “Hybridizing power and water cogeneration plants with biomass steam gasification systems: An Energy-Water-Waste (EW2) nexus case study,” Energy Convers. Manag., vol. 240, p. 114253, Jul. 2021, doi: 10.1016/j.enconman.2021.114253.
  18. I. Ahmed, M. Rehan, A. Basit, S. H. Malik, U.-E.-H. Alvi, and K.-S. Hong, “Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations,” Energy, vol. 261, p. 125178, Dec. 2022, doi: 10.1016/j.energy.2022.125178.
  19. R. Karthikeyan, “Combined economic emission dispatch using grasshopper optimization algorithm,” Mater. Today Proc., vol. 33, pp. 3378–3382, Jan. 2020, doi: 10.1016/j.matpr.2020.05.187.
  20. C. Wang, L. Wang, X. Deng, J. Liu, and D. Guo, “Scenario-based line switching for enhancing static voltage stability with uncertainty of renewables and loads,” Int. J. Electr. Power Energy Syst., vol. 145, p. 108653, Feb. 2023, doi: 10.1016/j.ijepes.2022.108653.
  21. B. Singh and A. Kumar, “Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program,” Energy, vol. 278, p. 127867, Sep. 2023, doi: 10.1016/j.energy.2023.127867.
  22. A. G. Abo-Khalil, “Digital twin real-time hybrid simulation platform for power system stability,” Case Stud. Therm. Eng., vol. 49, p. 103237, Sep. 2023, doi: 10.1016/j.csite.2023.103237.
  23. N. Amjady and M. R. Ansari, “Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation,” Energy Convers. Manag., vol. 49, no. 10, pp. 2629–2641, Oct. 2008, doi: 10.1016/j.enconman.2008.04.010.
  24. M. Ahmadipour, M. Murtadha Othman, R. Bo, M. Sadegh Javadi, H. Mohammed Ridha, and M. Alrifaey, “Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer,” Expert Syst. Appl., vol. 235, p. 121212, Jan. 2024, doi: 10.1016/j.eswa.2023.121212.

Full Text:
Article Info
Submitted: 2023-10-11
Published: 2024-02-07
Section: Artikel
Article Statistics: