ONION CRACKERS SALES FORECASTING USING ARTIFICIAL NEURAL NETWORK METHOD AND HOLT'S DOUBLE EXPONENTIAL SMOOTHING
DOI : 10.24269/mtkind.v18i1.7501
Changes in product demand is a problem that is often faced by the industry as well as one of them is onion crackers. Tapioca flour is the main ingredient used to make onion crackers. Because the demand for crackers is always changing, this company often experiences excess or shortage of raw materials. If there is an excess of raw materials, the company must incur additional costs for the maintenance and storage of raw materials so that raw materials can be properly stored in accordance with existing standards, which of course costs a lot. Therefore, companies must plan to solve this problem by planning raw material requirements by forecasting raw material requirements using the artificial neural network method and double exponential smoothing holt. The results showed that the artificial network method had a mean square error of 0.120 and the mean square error using the double exponential smoothing method yielded a value of 206.19. Based on these two values, it can be concluded that the artificial neural network method is more accurate than the double exponential smoothing holt method. This can be seen by comparing the roat mean square error values of the two methods..
- S. Mida, dkk., “Sistem Informasi Pembelian Bahan Baku Makanan Menggunakan Metode Waterfall”, Bianglala Informatika, vol. 9, pp. 51-55, 2021.
- S. D. Galih, dkk.,” Perencanaan Kebutuhan Bahan Baku Produk Songkok Dengan Menggunakan Metode Material Requirement Planning”, Jurnal Sistem dan Teknik Industri, vol. 2, pp. 167-174, 2021.
- S. Ria, dan S. Siti, “Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode ARIMA dan Grey System Theory”, Jurnal Riset Statistika, vol. 2, pp. 1-12, 2022.
- C. Niken dan M. Ade, “Perbandingan Metode Single Exponential Smoothing Dan Moving Average Pada Peramalan Penjualan Produk Minyak Goreng Di Pt Tunas Baru Lampung”, Jurnal Rekayasa Sistem Industri, vol. 6, pp. 101-106, 2021.
- S. A. Dyah, dkk., “Optimasi Persediaan Bahan Baku Kain Produk Garmen dengan Metode Economic Order Quantity”, Cakrawangsa Bisnis, vol. 3, pp. 45-66, 2022.
- T. F. Enoni, dan Nurviana, “Peramalan Jumlah Penduduk Miskin Di Kabupaten Aceh Tamiang Menggunakan Metode Exponential Smoothing”, Jurnal Ilmiah dan Matematika Terapan, vol. 4, pp. 31-35, 2022..
- N. Zulfa, dkk., “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means”, Jurnal Teknologi dan Sistem Informasi, vol. 2, pp. 100-108, 2021.
- R. H. J. Husa, dkk., “Analisa Kelulusan Mahasiswa Teknik Informatika Tepat Waktu Menggunakan Algoritma Artificial Neural Network (ANN)”, Jurnal Teknologi dan Rekayasa, vol. 7, pp. 1-11, 2022.
- P. Purwono, dkk., “Model Prediksi Otomatis Jenis Penyakit Hipertensi dengan Pemanfaatan Algoritma Machine Learning Artificial Neural Network”, Insect, vol. 7, pp. 82-90, 2022.
- J. Herlina, dkk., “Metode Komparasi Artificial Neural Network Pada Prediksi Curah Hujan”, Jurnal Tekno Insentif, vol. 14, p, 48-53, 2020.
- I. A. Rizka, dan B. N. Hari, “Penerapan Metode Artificial Neural Network dalam Peramalan Jumlah Kujungan Ibu Hamil (K4)”, Jurnal Biometrika dan kependudukan, vol. 8, pp. 11-20, 2019.
- S. P. Nabilah, dkk., “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, pp. 2612-2618, 2018.
- Y. Andre, “Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Asesmen Nasional Berbasis Komputer (ANBK) SMP Se Kota Sawahlunto”, Jurnal Informasi dan Teknologi, vol. 4, pp. 224-229, 2022.
- F. Yuni, dkk., “Jaringan Syaraf Tiruan Untuk Memprediksi Penyakit Campak Menggunakan Algoritma Backpropagation”, vol. 1, pp. 43-46, 2022.
- S. M. Ridwan, dan U. Maria, “Penerapan Data Mining Dalam Pengelompokan Jumlah Penumpang Trans Musi Di Kota Palembang Menggunakan Metode K-Means”, Bina Dharma Conference on Computer Science, vol. 9, pp. 60-68, 2022.
- A. E. Yolanda, dkk., “Analisis Balancing Data Untuk Meningkatkan Akurasi Dalam Klasifikasi”, Prosiding Seminar Naional Aplikasi Sains & Teknologi, pp. 24-28, 2021.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.