KARAKTERISTIK KEKUATAN IMPAK DAN KEKERASAN HYBRID BIOKOMPOSIT BERBASIS EPOKSI YANG DIPERKUAT SERAT SABUT KELAPA DAN SERAT SINTETIS

Indra Mawardi* -  Program Studi Teknologi Rekayasa Manufaktur Jurusan Teknik Mesin Politeknik Negeri Lhokseumawe, Indonesia
Nurdin Husin -  Politeknik Negeri Lhokseumawe, Indonesia
Zaini Zaini -  Politeknik Negeri Lhokseumawe, Indonesia
Usman Usman -  Politeknik Negeri Lhokseumawe, Indonesia
Saifuddin Saifuddin -  Politeknik Negeri Lhokseumawe, Indonesia

DOI : 10.24269/mtkind.v16i1.5102

Abstrak

 

Penggunaan serat alam sebagai penguat pada material komposit polimer memberikan beberapa keunggulan karena densitasnya yang rendah, biodegradable, dan mudah didaur ulang, namun sifat mekanisnya masih di bawah serat sintetis. Oleh karena itu untuk meningkatkan sifat mekanik biokomposit yang diperkuat serat alami perlu dikombinasi dengan co-reinforcement serat sintetis. Dalam artikel ini, kami mempelajari hybrid biocomposite laminasi yang diperkuat dengan serat sabut kelapa dan serat sintetis menggunakan matriks resin epoksi. Hybrid biocomposite dibentuk secara hand lay up menggunakan penguat serat sabut kelapa dengan variasi serat sintetis berupa E-glass, kain sintetis, dan lembaran karet. Peletakan penguat dilakukan dengan berbagai variasi, yaitu HBK-1, HBK-2, dan HBK-3. Pengujian kekuatan impak, kekerasan dan densitas dilakukan untuk mempelajari karakteristik dari hybrid biocomposite. Hasil pengujian impak menunjukan varian HBK-1 memiliki kekuatan impak tertinggi sebesar 0.05 J/mm2. Sedangkan hasil pengujian kekerasan dan pengukuran densitas menunjukan varian HBK-3 menghasilkan nilai tertinggi, masing-masing 14,96 HB dan 1,29 g/cm3. Hasil pengujian memperlihatkan bahwa sifat material dasar dari setiap co-reinforcement dan jumlah lapisan memberikan pengaruh terhadap kekuatan impak dan kekerasan dari hybrid biocomposite. Dari hasil penelitian menunjukan penggunaan serat sabut kelapa yang inovatif akan bermanfaat bagi pengembangan teknologi material biokomposit dan aspek lingkungan.

 

Abstract

 

Using natural fibers as reinforcement in polymer composite materials provides several advantages because of their low density, biodegradability, and easy recycling. However, its mechanical properties are still below that of synthetic fibers. Therefore, to improve the mechanical properties of natural fiber reinforced biocomposite, combining it with synthetic fiber co-reinforcement is necessary. This article studies a laminated hybrid biocomposite reinforced coconut coir and synthetic fibres using an epoxy resin matrix. Hybrid biocomposite is formed by hand layup using reinforcing coconut fibre, with various synthetic fibers in the namely  E-glass, synthetic fabric, and rubber sheet. The reinforcement is laid out with various variations, namely HBK-1, HBK-2, and HBK-3. Impact strength, hardness and density tests were carried out to study the characteristics of the hybrid biocomposite. The impact test results show that the HBK-1 variant has the highest impact strength of 0.05 J/mm2. Meanwhile, hardness testing and density measurements showed that the HBK-3 variant produced the highest values, 14.96 HB and 1.29 g/cm3. The test results show that the basic material properties of each co-reinforcement and the number of layers affect the impact strength and hardness of the hybrid biocomposite. The research results show that innovative coconut fibre will be beneficial for the development of biocomposite material technology and environmental aspects

Keywords
Hybrid biocomposite, Coconut fiber, Synthetic fiber, Impact strength, Hardness
  1. K. M. F. Hasan, P. G. Horváth, M. Bak, and T. Alpár, “A state-of-the-art review on coir fiber-reinforced biocomposites,” RSC Adv., vol. 11, no. 18, pp. 10548–10571, 2021.
  2. K. M. Hasan, P. G. Horváth, and T. Alpár, “Potential natural fiber polymeric nanobiocomposites: A review,” Polymers (Basel)., vol. 12, no. 5, p. 1072, 2020.
  3. A. G. Adeniyi, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, “A review of coir fiber reinforced polymer composites,” Compos. Part B Eng., p. 107305, 2019.
  4. A. K. Mohanty, M. Misra, and L. T. Drzal, “Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world,” J. Polym. Environ., vol. 10, no. 1, pp. 19–26, 2002.
  5. S. H. P. Bettini et al., “Investigation on the use of coir fiber as alternative reinforcement in polypropylene,” J. Appl. Polym. Sci., vol. 118, no. 5, pp. 2841–2848, 2010.
  6. K. M. Praveen et al., “Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres,” Appl. Surf. Sci., vol. 368, pp. 146–156, 2016.
  7. V. Guna, M. Ilangovan, M. G. Ananthaprasad, and N. Reddy, “Hybrid biocomposites,” Polym. Compos., vol. 39, pp. E30–E54, 2018.
  8. K. Doost-hoseini, H. R. Taghiyari, and A. Elyasi, “Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse,” Compos. Part B Eng., vol. 58, pp. 10–15, 2014.
  9. M. E. Ali and A. Alabdulkarem, “On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers,” Constr. Build. Mater., vol. 138, pp. 276–284, 2017.
  10. T. Wu, X. Wang, and K. Kito, “Effects of pressures on the mechanical properties of corn straw bio-board,” Eng. Agric. Environ. food, vol. 8, no. 3, pp. 123–129, 2015.
  11. A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, “Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 3988–3994, 2019.
  12. B. Abu-Jdayil, A.-H. Mourad, W. Hittini, M. Hassan, and S. Hameedi, “Traditional, state-of-the-art and renewable thermal building insulation materials: An overview,” Constr. Build. Mater., vol. 214, pp. 709–735, 2019.
  13. F. Z. Arrakhiz, M. Malha, R. Bouhfid, K. Benmoussa, and A. Qaiss, “Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene,” Compos. Part B Eng., vol. 47, pp. 35–41, 2013.
  14. S. Siddika, F. Mansura, M. Hasan, and A. Hassan, “Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites,” Fibers Polym., vol. 15, no. 5, pp. 1023–1028, 2014.
  15. E. S. Zainudin, L. H. Yan, W. H. Haniffah, M. Jawaid, and O. Y. Alothman, “Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites,” Polym. Compos., vol. 35, no. 7, pp. 1418–1425, 2014.
  16. I. Mawardi and H. Hanif, “Sifat Mekanis Komposit Polimer Hibrid Diperkuat Serat Sabut Kelapa-E-Glass,” ETHOS J. Penelit. dan Pengabdi. Kpd. Masy., vol. 6, no. 2, pp. 297–304, 2018.
  17. I. Mawardi, M. N. M. Zubir, J. Bakri, and A. Jannifar, “Development of a hybrid coir fiber composites as ballistic material,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 268, no. 1, p. 12130.
  18. V. K. Bhagat, S. Biswas, and J. Dehury, “Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites,” Polym. Compos., vol. 35, no. 5, pp. 925–930, 2014.
  19. M. S. Islam, N. A. B. Hasbullah, M. Hasan, Z. A. Talib, M. Jawaid, and M. K. M. Haafiz, “Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites,” Mater. Today Commun., vol. 4, pp. 69–76, 2015.
  20. I. Mawardi, “Microfibrillation of Coir Using High Speed Blender to Improvement of Tensile Behavior of Coir Reinforced Epoxy Composites,” KnE Eng., pp. 157–170, 2019.
  21. A. R. Hani, M. Mariatti, A. Roslan, M. N. Roslan, and A. R. Othman, “Influence of woven and cross-ply laminates on mechanical properties of coir epoxy composite,” in Applied Mechanics and Materials, 2013, vol. 315, pp. 136–140.
  22. M. Mittal and R. Chaudhary, “Development of PALF/Glass and COIR/Glass fiber reinforced hybrid epoxy composites,” J. Mater. Sci. Surf. Eng, vol. 6, no. 5, pp. 851–861, 2018.

Full Text:
Article Info
Submitted: 2022-04-15
Published: 2022-08-02
Section: Artikel
Article Statistics: