ESTIMASI SUDUT DAN AMPLITUDO DARI ARAH KEDATANGAN SINYAL RADAR MIMO DENGAN APPROXIMATION MAXIMUM LIKELIHOOD

Ashar Ashar -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Borneo Tarakan, Indonesia
Syahfrizal Tahcfulloh* -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Borneo Tarakan, Indonesia

DOI : 10.24269/mtkind.v17i2.4406

Abstrak

 

Penentuan jumlah parameter target dari suatu sistem radar sangat ditentukan dari kemampuan estimasi arah kedatangan sinyal target. Hal ini amat bergantung pada tingkat akurasi dan resolusi deteksi arah dari estimasi tersebut terutama untuk target-target yang saling berdekatan. Estimasi arah kedatangan sinyal ini sangat besar dipengaruhi oleh estimasi radar-cross section (RCS) dari target. RCS ini proporsional dengan keberadaan target yang nantinya berimbas pada penentuan jumlah target terdeteksi. Banyak sekali pendekatan untuk mengestimasi hal tersebut pada radar multiple-input multiple-output (MIMO) salah satunya approximation maximum likelihood (AML). Makalah ini akan memberikan penurunan formulasi dan evaluasi dari estimasi parameter dengan pendekatan AML untuk sistem radar MIMO yang sekaligus juga membandingkannya dengan radar konvensional seperti phased-array (PA). Untuk menunjukkan keefektifan kinerja dari estimasi AML terhadap radar-radar tersebut maka akan dibandingkan dengan implementasi pendekatan sebelumnya seperti least squares (LS) dalam hal seperti magnitudo dari RCS, jumlah sudut kedatangan yang proporsional dengan jumlah target terdeteksi, dan jumlah elemen antena di transmitter (Tx) dan receiver (Rx) dari sistem radar. Berdasarkan dari hasil evaluasi untuk jumlah elemen antena Tx-Rx dengan 10 elemen, resolusi sudut deteksi untuk estimator AML yang diusulkan pada radar MIMO ternyata unggul dibanding estimator LS dengan resolusi sudut berturut-turut adalah 5,8 dan 2 dalam satuan derajat.

 

Abstract

 

Determining the number of target parameters for a radar system is largely determined by the ability to estimate the direction of arrival of the signal from the target. This is very dependent on the accuracy and detection resolution of the estimated direction of arrival, especially for targets that are close to each other. The estimated direction of arrival of this signal is greatly influenced by the estimated radar-cross section (RCS) of the target. This RCS is proportional to the presence of targets which will have an impact on determining the number of targets detected. There are many approaches to estimate this on multiple-input multiple-output (MIMO) radar, one of which has high angular detection resolution is approximation maximum likelihood (AML). This paper will provide a formulation and evaluation of parameter estimation using this approach for MIMO radar systems while also comparing it with conventional radars such as phased-array (PA). To show the effectiveness of the performance of the proposed estimate for these radars, it will be compared with the implementation of previous approaches such as least squares (LS) in terms such as the magnitude of the RCS, the number of angles of arrival proportional to the number of targets detected, and the number of antenna elements in the transmitter (Tx) and receiver (Rx) of the radar system. Based on the evaluation results for the number of Tx-Rx antenna elements with 10, the detection angle resolution for the proposed estimator on the MIMO radar turns out to be superior to the LS estimator with an angle resolution of 5.8 and 2 in degrees, respectively. 

Keywords
Approximation Maximum Likelihood, Estimasi Parameter, Phased-Array, Radar MIMO
  1. B. R. Mahafza, Introduction to radar analysis. Chapman and Hall/CRC, 2017.
  2. M. I. Skolnik, Introduction to radar systems, vol. 3. McGraw-hill New York, 1980.
  3. Y. Konishi, “Phased array antennas,” IEICE Trans. Commun., vol. 86, no. 3, pp. 954–967, 2003.
  4. R. J. Mailloux, Phased array antenna handbook. Artech house, 2017.
  5. R. C. Hansen, Phased array antennas. John Wiley & Sons, 2009.
  6. C.-Y. Chen, Signal processing algorithms for MIMO radar. California Institute of Technology, 2009.
  7. J. Li and P. Stoica, MIMO radar signal processing. John Wiley & Sons, 2008.
  8. N. S. Bestari and A. Wagyana, “Rancang Bangun Antena Bowtie pada Video Sender sebagai Pemancar TV Streaming,” J. Tek. Elektro, vol. 10, no. 2, pp. 59–63, 2018.
  9. Ip. E. Yulianto, “ANALISIS KOMUNIKASI DATA PADA LESAN TEMBAK UNTUK LATIHAN TEKNIK TEMPUR CEPAT BERBASIS LORA 1278,” MULTITEK Indones., vol. 13, no. 2, pp. 120–127, 2019.
  10. S. Tahcfulloh and G. Hendrantoro, “FPMIMO: a general MIMO structure with overlapping subarrays for various radar applications,” IEEE Access, vol. 8, pp. 11248–11267, 2020.
  11. S. Tahcfulloh and G. Hendrantoro, “Full phased MIMO radar with colocated antennas,” Int. J. Commun. Antenna Propag., vol. 9, no. 2, pp. 144–154, 2019.
  12. C. Gao, H. Zhou, R. Wu, X. Xu, F. Shen, and Z. Guo, “Parameter estimation and multi-pulse target detection of MIMO radar,” in 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 909–914.
  13. M. Hardiwansyah, S. Tahcfulloh, and G. Hendrantoro, “Parameter identifiability of phased-MIMO radar,” in 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 2019, pp. 192–195.
  14. Z. Sun, J. Wang, J. Sun, and P. Lei, “Parameter estimation method of walking human based on radar micro-Doppler,” in 2017 IEEE Radar Conference (RadarConf), 2017, pp. 567–570.
  15. C. Thajudeen and A. Hoorfar, “A hybrid bistatic–monostatic radar technique for calibration-free estimation of lossy wall parameters,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1249–1252, 2016.
  16. Y.-C. Lin, T.-S. Lee, Y.-H. Pan, and K.-H. Lin, “Low-complexity high-resolution parameter estimation for automotive MIMO radars,” IEEE Access, vol. 8, pp. 16127–16138, 2019.
  17. F. Vincent, O. Besson, and E. Chaumette, “Approximate unconditional maximum likelihood direction of arrival estimation for two closely spaced targets,” IEEE Signal Process. Lett., vol. 22, no. 1, pp. 86–89, 2014.
  18. R. Alizadeh and Y. Savaria, “Performance analysis of a reduced complexity SCMA decoder exploiting a low-complexity maximum-likelihood approximation,” in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2016, pp. 253–256.
  19. K. D. Rao, M. N. S. Swamy, K. D. Rao, and M. N. S. Swamy, “Spectral analysis of signals,” Digit. signal Process. theory Pract., pp. 721–751, 2018.
  20. P. Stoica and R. L. Moses, Spectral analysis of signals, vol. 452. Pearson Prentice Hall Upper Saddle River, NJ, 2005.
  21. H. Li, J. Li, and P. Stoica, “Performance analysis of forward-backward matched-filterbank spectral estimators,” IEEE Trans. Signal Process., vol. 46, no. 7, pp. 1954–1966, 1998.
  22. L. Xu, J. Li, and P. Stoica, “Target detection and parameter estimation for MIMO radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 927–939, 2008.
  23. J. Li, P. Stoica, L. Xu, and W. Roberts, “On parameter identifiability of MIMO radar,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968–971, 2007.
  24. M. S. Davis, G. A. Showman, and A. D. Lanterman, “Coherent MIMO radar: The phased array and orthogonal waveforms,” IEEE Aerosp. Electron. Syst. Mag., vol. 29, no. 8, pp. 76–91, 2014.
  25. S. Tahcfulloh and M. Hardiwansyah, “Parameter estimation and target detection of phased-MIMO radar using capon estimator,” J. Elektron. dan Telekomun., vol. 20, no. 2, pp. 60–69, 2020.
  26. E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, “Spatial diversity in radars—Models and detection performance,” IEEE Trans. signal Process., vol. 54, no. 3, pp. 823–838, 2006.

Full Text:
Article Info
Submitted: 2021-12-01
Published: 2024-04-18
Section: Artikel
Article Statistics: