KETAKSAMAAN JUMLAHAN SINUS PANGKAT 2^n YANG BERLAKU PADA SEGITIGA LANCIP
DOI:
https://doi.org/10.24269/js.v3i1.955Abstract Let \alpha, \beta, \gamma are angles in acute triangle ABC and a,b,c are the length of the triangle. By using the sine of angles as the relationship between the length of triangle and the radius of the circle circumscribed about a plane triangle, will be proven the sum inequality of quadratic sine in acute triangle. Then, by using the quadratic sum inequality of the sides of triangle will be extended for the case of the sum inequality of sine of order 2^n in acute triangle.
References
Bottema, O., Djordjivic, R.Z., Janic, R.R., Mitrincvic, D.S., Vasic, P.M., 1969, Geometric Inequalities, Wolters-Noordhoff Publishing Groningen, The Netherlands
Chauvenet, William, 1887, A Treatise on Plane and Spherical Trigonometry, J. B. Lippincott Company, Philadelphia
Downloads
Published
2018-05-31
Issue
Section
Artikel
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.