SIMULASI OPTIMASI KAPASITAS PLTS ATAP UNTUK RUMAH TANGGA DI SURABAYA

Elieser Tarigan* -  Universitas Surabaya (Ubaya), Indonesia

DOI : 10.24269/mtkind.v14i1.2600

Energi surya merupakan salah satu pilihan yang dapat digunakan untuk mengurangi pemakaian  sumber energi fosil yang persediaannya semakin menipis serta pemanasan global yang ditimbulkan akibat pemakaiannya. Pemerintah Indonesia telah mengusahakan pemanfaatn pembangkit listrik tenaga surya (PLTS) melalui berbagai kebijakan. Tulisan ini membahas  optimasi kapasitas PLTS atap (rooftop) untuk sebuah rumah tangga mengacu pada kebijakan pemerintah tentang PLTS atap yang berlaku saat ini. Studi kasus dilakukan terhadap sebuah rumah dengan perkiraan beban PLN terpasang 2,2 kVA dan kebutuhan energi listrik sekitar 13 kWh/hari, yang berada di Surabaya. Energi keluaran sistemPLTS  disimulasikan dengan software PVSpot dan SolarGIS. Untuk memenuhi kebutuhan listrik rumah tangga dalam studi kasus, sistem PLTS yang optimum adalah sekitar 3 kWp dengan sistem  inverter yang sesuai. Energi keluaran rata-rata bulanan sistem PLTS tersebut adalah .350 kWh dengan rentang terendah dan tertinggi masing-masing 203 kWh dan 350 kWh per bulan. Energi tersebut dapat memenuhi 90% kebutuhan energi rumah yang disimulasikan.

 

Solar energy is one of the options that can be exploited to reduce fossil-based fuel which its availability is limited and global warming impact of its use. The Government of Indonesia has been promoting solar electricity use through various policies. This paper discusses the optimum capacity of the solar rooftop PV system specifically for households based on the most recent The Government policy.  A typical house with the grid capacity installed 2,2 kVA located in Surabaya is simulated. The daily energy demand of the house is about 13 kWh per day. Simulations were carried out using PVspot and SolarGIS. It is found that the optimum capacity of the rooftop PV system for the simulated house is 3 kWp with a suitable of the inverter system. The average energy output for such a system is 350 kWh per month, with minimum and maximum of 203 kWh and 350 kWh per month respectively. The system could provide 90% of electricity for the simulated household.

 

Keywords
solar energy, solar cells, rooftop PV system, household, simulation
  1. K. ESDM, “Rencana Umum Energi Nasional (RUEN),” 2016. [Online]. Available: https://www.esdm.go.id/id/publikasi/ruen.
  2. E. Tarigan, Djuwari, and F. D. Kartikasari, “Techno-economic Simulation of a Grid-connected PV System Design as Specifically Applied to Residential in Surabaya, Indonesia,” Energy Procedia, vol. 65, pp. 90–99, 2015.
  3. J. Sommerfeld, L. Buys, and D. Vine, “Residential consumers’ experiences in the adoption and use of solar PV,” Energy Policy, vol. 105, no. December 2016, pp. 10–16, 2017.
  4. A. K. Shukla, K. Sudhakar, and P. Baredar, “Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology,” Energy Reports, vol. 2, pp. 82–88, 2016.
  5. R. Rachchh, M. Kumar, and B. Tripathi, “Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area,” Energy Convers. Manag., vol. 115, pp. 244–252, 2016.
  6. S. Freitas, C. Catita, P. Redweik, and M. C. Brito, “Modelling solar potential in the urban environment: State-of-the-art review,” Renew. Sustain. Energy Rev., vol. 41, pp. 915–931, 2015.
  7. I. Sukarno, H. Matsumoto, L. Susanti, and R. Kimura, “Urban Energy Consumption in a City of Indonesia : General Overview,” Int. J. Energy Econ. Policy, vol. 5, no. 1, pp. 360–373, 2015.
  8. E. Hamdi, “Indonesia’ s Solar Policies: Designed to Fail?,” 2019.
  9. Goverment of Indonesia, Peraturan Menteri ESDM No. 49 Tahun 2018 tentang Penggunaan Sistem Pembangkit Listrik Tenaga Surya (PLTS) Atap. 2018.
  10. P. Redweik, C. Catita, and M. Brito, “Solar energy potential on roofs and facades in an urban landscape,” Sol. Energy, vol. 97, pp. 332–341, 2013.
  11. E. Tarigan, Djuwari, and F. D. Kartikasari, “Techno-economic Simulation of a Grid-connected PV System Design as Specifically Applied to Residential in Surabaya, Indonesia,” Energy Procedia, vol. 65, pp. 90–99, 2015.
  12. L. Bergamasco and P. Asinari, “Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy),” Sol. Energy, vol. 85, no. 5, pp. 1041–1055, 2011.
  13. L. K. Wiginton, H. T. Nguyen, and J. M. Pearce, “Quantifying rooftop solar photovoltaic potential for regional renewable energy policy,” Comput. Environ. Urban Syst., vol. 34, no. 4, pp. 345–357, 2010.
  14. R. Vardimon, “Assessment of the potential for distributed photovoltaic electricity production in Israel,” Renew. Energy, vol. 36, no. 2, pp. 591–594, 2011.
  15. BPS Kota Surabaya, “Kota Surabaya Dalam Angka 2019,” 2019. [Online]. Available: https://surabayakota.bps.go.id/publication.html?Publikasi%5BtahunJudul%5D=2019&Publikasi%5BkataKunci%5D=Surabaya+dalam+angka&yt0=Tampilkan.
  16. Solargis.info, “SolarGIS PV Planner,” SolarGIS, 2014. [Online]. Available: https://solargis.info/.
  17. Humas. EBTKE, “Ekspor Impor Listrik Pelanggan PLTS Atap Mulai Berlaku 1 Januari 2019,” 2018. [Online]. Available: http://ebtke.esdm.go.id/post/2018/11/28/2062/ekspor.impor.listrik.pelanggan.plts.atap.mulai.berlaku.1.januari.2019?lang=en.
  18. A. Orioli and A. Di Gangi, “Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings,” Appl. Energy, vol. 113, pp. 955–969, 2014.
  19. H. Outhred and M. Retnanestri, “Insights from the Experience with Solar Photovoltaic Systems in Australia and Indonesia,” Energy Procedia, vol. 65, pp. 121–130, 2015.

Full Text:
Article Info
Submitted: 2020-04-27
Published: 2020-07-27
Section: Artikel
Article Statistics: