OPTIMASI SINGLE RESPONSE PROSES RESISTANCE SPOT WELDING PADA PENGGABUNGAN BAJA BEDA MATERIAL MENGGUNAKAN METODE EKSPERIMENTAL TAGUCHI

Sukarman - Sukarman* -  Sekolah Tinggi Teknologi Wastukancana, Indonesia
Amri Abdulah -  Sekolah Tinggi Teknologi Wastukancana, Indonesia

DOI : 10.24269/mtkind.v14i2.3076

ABSTRAK

Artikel ini menyajikan analisis eksperimental pengoptimalan resistance spot welding (pengelasan titik resistansi) yang telah berhasil dilakukan menggunakan mesin spot welding dengan sistem gaya penekan pneumatik (pressure force system/ PFS) pada kedua elektrodanya. Optimasi dilakukan dengan mengabungkan baja beda material galvanis (SGCC-JIS G 3302) dengan baja karbon rendah SPHC (JIS 3131). Baja SGCC merupakan pelat lembaran SPCC-SD (JIS 3141) yang dilapisi seng (Zn) dengan ketebalan sekitar 18.5 mikron. Lapisan seng dengan ketebalan yang cukup signifikan, menyebabkan penurunan sifat mampu lasnya. Penelitian ini bertujuan untuk mendapatkan hasil pengujian tegangan tarik geser (shear-tensile strength) tertinggi dari parameter resistance spot welding  yang ditentukan. Penelitian menggunakan metode Taguchi 4-variabel dan kombinasi level eksperimen. Kombinasi level ekperimen yang digunakan yaitu, 2-level untuk parameter pertama dan 3-level untuk tiga parameter lainnya. Hasil optimasi didapatkan kekuatan geser-tarik tertinggi pada 5758.96 N yang dicapaai pada squeeze time-22 cycles, welding current-27 kA, welding time-0.6 detik dan holding time-15 cycles. Pengaruh yang signifikan didapat pada welding current dengan delta S / N ratio sebesar 1.21. Parameter signifikan lainya berturut-turut adalah welding time, squeeze time, and holding time. Nilai delta S / N rasio masing-masing adalah  0,95, 0,65 dan 0,19.

 

ABSTRACT

This study presents an experimental optimization of resistance spot welding performed using a pneumatic force (electrode) system (PFS) machine. Optimization was carried out to joint the galvanized steel (SGCC  JIS G 3313) with low-carbon steel (SPHC JIS 3131). SGCC is an SPCC-SD (JIS 3141) plate coated zinc (Zn) with a thickness of about 18.5 microns. A zinc coating, with significant thickness layers, causes the weldability of the metal to decrease. This study aims to obtain the tensile shear strength test results from the specified resistance spot welding parameters. The research used the Taguchi method using 4-variables and a combination of 2-level experiments. This research's practical level is 2-levels for the first parameter and 3-levels for the other parameters. The Taguchi experiment's optimization achieved the highest shear-tensile at 5758.96 N. This works performed at 22 cycles of squeeze time, 27 kA welding current, and welding time of 0.6 seconds and 15 cycles of holding time. The S / N ratio analysis results show that the welding current is the most significant to the outcome and followed by welding time, squeeze time, and holding time. The S / N delta ratio values are 1.21, 0.95, 0.65 and 0.19, respectively.

 

Keywords
Resistance spot welding; Taguchi method; Weldability material; S/N ratio; Dissimilar material.
  1. S. N. BSN and Indonesia, (hot dip galvanized). 2004.
  2. P. Russo Spena, M. De Maddis, F. Lombardi, and M. Rossini, “Investigation on Resistance Spot Welding of TWIP Steel Sheets,” Steel Res. Int., vol. 86, no. 12, pp. 1480–1489, 2015.
  3. S. K. Khanna, C. He, and H. N. Agrawal, “Residual stress measurement in spot welds and the effect of fatigue loading on redistribution of stresses using high sensitivity Moiré interferometry,” J. Eng. Mater. Technol. Trans. ASME, vol. 123, no. 1, pp. 132–138, 2001.
  4. S. H. M. Anijdan, M. Sabzi, M. Ghobeiti-hasab, and A. Roshan-ghiyas, “Materials Science & Engineering A Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength,” Mater. Sci. Eng. A, vol. 726, no. April, pp. 120–125, 2018.
  5. B. Xing, Y. Xiao, Q. H. Qin, and H. Cui, “Quality assessment of resistance spot welding process based on dynamic resistance signal and random forest based,” Int. J. Adv. Manuf. Technol., vol. 94, no. 1–4, pp. 327–339, 2018.
  6. Miller Handbook, Handbook for Resistance Spot Welding. Miller Electric Mfg. Co., 2010.
  7. E. Gunawan, S. Sukarman, A. D. Shieddieque, and C. Anwar, “Optimasi Parameter Proses Resistance Spot Welding pada Pengabungan Material SECC-AF,” no. September, 2019.
  8. D. L. Olson, S. Thomas A., S. Liu, and G. R. Edwards, ASM Vol 6 WELDING, BRAZING, AND SOLDERING, vol. 6. ASM International, 2019.
  9. X. Wan, Y. Wang, and D. Zhao, “Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 83, no. 1–4, pp. 545–559, 2016.
  10. H. Wiryosumarto and T. Okumura, Teknologi Pengelasan Logam, 8th ed. Jakarta: PT Pradnya Paramita, 2000.
  11. J. P. Oliveira, K. Ponder, E. Brizes, T. Abke, A. J. Ramirez, and P. Edwards, “Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels,” J. Mater. Process. Technol., vol. 273, no. January, p. 116192, 2019.
  12. A. H. Ertas and F. O. Sonmez, “Design optimization of spot-welded plates for maximum fatigue life,” 2011.
  13. S. T. Pasaribu, S. Sukarman, A. D. Shieddieque, and A. Abdulah, “Optimasi Parameter Proses Resistance Spot Welding pada Pengabungan Beda Material SPCC,” 2019, no. September.
  14. A. G. Thakur and V. M. Nandedkar, “Optimization of the Resistance Spot Welding Process of Galvanized Steel Sheet Using the Taguchi Method,” pp. 1171–1176, 2014.
  15. S. Shafee, B. B. Naik, and K. Sammaiah, “Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method,” Mater. Today Proc., vol. 2, no. 4–5, pp. 2595–2604, 2015.
  16. H. E. Emre and R. Kaçar, “Development of weld lobe for resistance spot-welded TRIP800 steel and evaluation of fracture mode of its weldment,” Int. J. Adv. Manuf. Technol. Springer, vol. 85, pp. 1737–1747, 2016.
  17. K. Vignesh, A. E. Perumal, and P. Velmurugan, “Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel,” pp. 455–465, 2017.
  18. Sukarman et al., “Optimization of Tensile-Shear Strength in the Dissimilar Joint of Zn-Coated Steel and Low Carbon Steel,” vol. 3, no. 3, pp. 115–125, 2020.
  19. V. Kuklík and J. Kudláĉek, Hot-Dip galvanizing of steel structures. 2016.
  20. American Welding Society, Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel (AWS D8.9M:2012). 2012, p. 7.
  21. Miller Welds Handbook, “HANDBOOK FOR Resistance Spot Welding,” 2012.
  22. J. Pan and K. Sripichai, “Mechanics modeling of spot welds under general loading conditions and applications to fatigue life predictions,” Woodhead Publ. Ltd., 2010.
  23. P. J. Ross, Taguchi Techniques for Quality Engineering. New York: Tata McGraw-Hill, 2005.
  24. A. Abdulah, S. Sukarman, C. Anwar, A. Djafar Shieddieque, and A. Ilmar Ramadhan, “Optimization of yarn texturing process DTY-150D/96F using taguchi method,” Technol. Rep. Kansai Univ., vol. 62, no. 4, pp. 1471–1479, 2020.
  25. S. F. Arnold, Design of Experiments with MINITAB, vol. 60, no. 2. 2006.
  26. E. DEL CASTILLO, Process Optimization A Statistical Approach. Springer New York, 2007.

Full Text:
Article Info
Submitted: 2020-10-02
Published: 2020-12-26
Section: Artikel
Article Statistics: