Pengolahan Citra Digital untuk Menentukan Kadar Asam Askorbat pada Buah dengan Metode Titrasi Iodimetri

Danang Erwanto* -  Universitas Islam Kadiri
Yudo Bismo Utomo -  Universitas Islam Kadiri-Kediri, Indonesia
Farrady Alif Fiolana -  Universitas Islam Kadiri-Kediri, Indonesia
Mochtar Yahya -  Universitas Islam Kadiri-Kediri, Indonesia

DOI : 10.24269/mtkind.v12i2.1290

Measurement of ascorbic acid in fruits can be implemented by various methods. The method often used to measure ascorbic acid levels is the iodometric titration method. In this research applying digital image processing with color segmentation to measure levels of ascorbic acid using iodimetry titration method, because end point indicator of titration is a change of blue color in the titration solvent. From the research, digital image processing is capable to detect the blue color changes in the titration solvent. Measurement of ascorbic acid level in lime fruit by implementing digital image processing with color space transformation to HSV showed that the average ascorbic acid content was 0.037% and an average error value of 17.54%.

Keywords
Electrical Engineering, Informatic
  1. A. Pratama, D. Darjat, and I. Setiawan, “Aplikasi LabVIEW sebagai Pengukur Kadar Vitamin C dalam Larutan menggunakan Metode titrasi Iodimetri,” Jurusan Teknik Elektro Fakultas Teknik Undip, 2011.
  2. F. Rahmawati and C. Hana, “PENETAPAN KADAR VITAMIN C PADA BAWANG PUTIH (Allium sativum, L) DENGAN METODE IODIMETRI,” CERATA J. Ilmu Farm. (Journal Pharm. Sci., vol. 4, no. 1, 2016.
  3. A. Rahim, A. Alimuddin, and others, “Analisis Kandungan Asam Askorbat Dalam Buah Naga Merah (Hylocereus Polyrhizus) Dengan Iodimetri,” J. Kim. Mulawarman, vol. 14, no. 1, 2016.
  4. A. Nurmastika, D. Erwanto, A. D. Rosanti, and F. A. Fiolana, “Rancang Bangun Alat Pengukur Kadar Asam Askorbat pada Buah dengan Metode Titrasi Iodimetri,” Setrum Sist. Kendali-Tenaga-Elektronika-Telekomunikasi-Komputer, vol. 7, no. 1, 2018.
  5. B. Y. B. Putranto, W. Hapsari, and K. Wijana, “Segmentasi warna citra dengan deteksi warna HSV untuk mendeteksi objek,” J. Inform., vol. 6, no. 2, 2011.
  6. R. Favoria Gusa, “Pengolahan Citra Digital Untuk Menghitung Luas Daerah Bekas Penambangan Timah,” J. Nas. Tek. Elektro, vol. 2, no. 2, pp. 27–34, 2013.
  7. T. Ohashi, Z. Aghbari, and A. Makinouchi, “Hill-climbing algorithm for efficient color-based image segmentation,” in IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, 2003, pp. 17–22.
  8. K. B. Shaik, P. Ganesan, V. Kalist, B. S. Sathish, and J. M. M. Jenitha, “Comparative study of skin color detection and segmentation in HSV and YCbCr color space,” Procedia Comput. Sci., vol. 57, pp. 41–48, 2015.
  9. K. Dawson-Howe, A practical introduction to computer vision with opencv. John Wiley & Sons, 2014.

Full Text:
Article Info
Submitted: 2018-11-03
Published: 2019-01-22
Section: Artikel
Article Statistics: 162 292