SIMULASI CFD PADA SAVONIUS HYDROKINETICS TURBINE DUA SUDU DENGAN VARIASI SUDUT PUNTIR HELIX
Abstrak Penggunaan bahan bakar fosil semakin meningkat mendorong pengembangan Energi Baru Terbarukan (EBT). Salah satu sumber EBT adalah hydropower yang banyak ditemukan di Indonesia, termasuk Magelang. Sungai Ndas Gending misalnya cocok dimanfaatkan pada skala mikro. Penelitian ini menganalisi pengaruh sudut puntir helix pada turbin Savonius menggunakan simulasi Computational Fluid Dynamics (CFD) tiga dimensi dengan membandingkan Savonius Hydrokinetics Turbine (SHT) dengan sudut puntir helix sebesar 45°; 67,5°; dan 90° kemudian akan diketahui torsi, Coefisien Power (CP), Coefisien Torsi (CT), dan kontur dari setiap simulasi. Kecepatan aliran menggunakan kecepatan rata-rata 0,7874 m/s saat musim kemarau dan saat musim hujan dengan kecepatan rata-rata 1,07 m/s. Hasil simulasi menunjukkan hasil bahwa SHT terbaik terjadi pada variasi sudut puntir helix sebesar 45° dengan torsi sebesar 1,466 Nm, disusul variasi sudut puntir helix 67,5° dengan torsi 0,184 Nm, dan yang terakhir variasi sudut puntir helix 90° dengan torsi 0,147 Nm, ketiga pengukuran dilakukan dengan kecepatan aliran saat musim kemarau.
Referensi
[1] Z. Wang, Z. Yang, B. Zhang, H. Li, and W. He, “How does urbanization affect energy consumption for central heating: Historical analysis and future prospects,†Energy Build, p. 111631, 2021.
[2] H. Van Asselt, “Governing Fossil Fuel Production in the Age of Climate Distruption : Towards an International Law of ’Leaving it ib the Ground,†Earth Syst, vol. 9, p. 100118, 2021.
[3] D. M. Prabowoputra, A. R. Prabowo, S. Hadi, and J. M. Sohn, “Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis,†Multidiscip, Model, Mater, Struct., vol. 17, pp. 253–272, 2021.
[4] T. Kinsey and G. Dumas, “Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils,†J. Fluids Eng. Trans, vol. 134, pp. 1–6, 2012.
[5] Erinofiardi et al, “A Review on Micro Hydropower in Indonesia,†Energy Procedia, vol. 110, pp. 316–321, 2016.
[6] D. M. Prabowoputra, A. R. Prabowo, S. Hadi, and J. M. Sohn, “Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis,†Multidiscip, Model, Mater, Struct., vol. 17, pp. 253–272, 2021.
[7] A. Y. Adipradana, F. Hilmy, H. T. Setiawan, A. R. Prabowo, and I. Yaningsih, Energi Kinetik Air: Potensi, Desain, dan Simulasi. Samarinda: Mulawarman University Press, 2022.
[8] Erinofiardi et al, “A Review on Micro Hydropower in Indonesia,†Energy Procedia, vol. 110, pp. 316–321, 2016.
[9] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,†Renew, Sustain, Energy Rev, vol. 43, pp. 72–82, 2015.
[10] J. Xu, T. Ni, and B. Zheng, “Hydropower development trends from a technological paradigm perspective,†Energy Convers Manag, vol. 90, pp. 195–206, 2015.
[11] M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,†Energy Procedia, vol. 141, pp. 383–388, 2017.
[12] N. R. Maldar, C. Y. Ng, and E. Oguz, “A review of the optimization studies for Savonius turbine considering hydrokinetic applications,†Energy Convers. Manag, vol. 226, p. 113495, 2020.
[13] F. Widyantama, D. Suanggana, and G. Gunawan, “Simulasi CFD Pengaruh Penggunaan Deflektor Pelat Lengkung terhadap Performa Turbin Air Savonius Sumbu Vertikal Dua Sudu,†Jurnal Rekayasa Mesin, vol. 16, no. 2, p. 234, 2021, doi: 10.32497/jrm.v16i2.2577.
[2] H. Van Asselt, “Governing Fossil Fuel Production in the Age of Climate Distruption : Towards an International Law of ’Leaving it ib the Ground,†Earth Syst, vol. 9, p. 100118, 2021.
[3] D. M. Prabowoputra, A. R. Prabowo, S. Hadi, and J. M. Sohn, “Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis,†Multidiscip, Model, Mater, Struct., vol. 17, pp. 253–272, 2021.
[4] T. Kinsey and G. Dumas, “Computational fluid dynamics analysis of a hydrokinetic turbine based on oscillating hydrofoils,†J. Fluids Eng. Trans, vol. 134, pp. 1–6, 2012.
[5] Erinofiardi et al, “A Review on Micro Hydropower in Indonesia,†Energy Procedia, vol. 110, pp. 316–321, 2016.
[6] D. M. Prabowoputra, A. R. Prabowo, S. Hadi, and J. M. Sohn, “Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis,†Multidiscip, Model, Mater, Struct., vol. 17, pp. 253–272, 2021.
[7] A. Y. Adipradana, F. Hilmy, H. T. Setiawan, A. R. Prabowo, and I. Yaningsih, Energi Kinetik Air: Potensi, Desain, dan Simulasi. Samarinda: Mulawarman University Press, 2022.
[8] Erinofiardi et al, “A Review on Micro Hydropower in Indonesia,†Energy Procedia, vol. 110, pp. 316–321, 2016.
[9] M. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,†Renew, Sustain, Energy Rev, vol. 43, pp. 72–82, 2015.
[10] J. Xu, T. Ni, and B. Zheng, “Hydropower development trends from a technological paradigm perspective,†Energy Convers Manag, vol. 90, pp. 195–206, 2015.
[11] M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,†Energy Procedia, vol. 141, pp. 383–388, 2017.
[12] N. R. Maldar, C. Y. Ng, and E. Oguz, “A review of the optimization studies for Savonius turbine considering hydrokinetic applications,†Energy Convers. Manag, vol. 226, p. 113495, 2020.
[13] F. Widyantama, D. Suanggana, and G. Gunawan, “Simulasi CFD Pengaruh Penggunaan Deflektor Pelat Lengkung terhadap Performa Turbin Air Savonius Sumbu Vertikal Dua Sudu,†Jurnal Rekayasa Mesin, vol. 16, no. 2, p. 234, 2021, doi: 10.32497/jrm.v16i2.2577.


